

Summary

Problem statement

- Neural architecture search (NAS) aims to automatically find highperforming neural networks from a pre-defined search space.
- Early NAS methods adopt reinforcement learning with policy networks. They typically require training many networks from scratch, which takes thousands of GPU hours.
- One-Shot NAS [1] adopts a weight-sharing technique to reduce the search time, where they train a single supernet that consists of all possible network architectures (*i.e.*, subnets). The trained supernet can act as a performance estimator, indicating that each subnet does not need to be trained from scratch to predict its performance.
- □ Few-Shot NAS [2,3] proposes to use multiple supernets, as the single supernet is likely to suffer from conflicts between subnets during training. Specifically, they limit the extent of weight sharing by splitting the search space into subspaces and assigning an individual supernet to each subspace.
- □ Zero-Shot NAS [4] aims to avoid training supernets. They rely on training-free measurements (e.g., Neural Tangent Kernels, FLOPs, or feature isotropy), typically referred to as zero-cost proxies, to evaluate the performance of each subnet.
- [1] Single path one-shot neural architecture search with uniform sampling, ECCV 2020
- [2] Few-shot neural architecture search, ICML 2021
- [3] Generalized few-shot nas with gradient matching, ICLR 2022
- [4] Neural architecture search without training, ICML 2021

Contributions

- We have introduced a novel few-shot NAS method that counts the number of nonlinear functions within a subnet to divide a search space in an efficient manner.
- We have observed that effectively dividing the search space enables maintaining the performance ranking between subnets after reducing the number of channels required for even supernets.
- Motivated by our finding, we have proposed to adjust the number of channels for each supernet, reducing the computational cost remarkably

Efficient Few-Shot Neural Architecture Search by Counting the Number of Nonlinear Functions

Youngmin Oh¹

Hyunju Lee¹

Bumsub Ham^{1,2}

¹Yonsei University

²Korea Institute of Science and Technology (KIST)

Method	K	Params (M)	Kendall's $ au$		
One-shot NAS					
SPOS (Guo et al. 2020)	1	<u>1.7</u>	0.554		
AngleNet (Hu et al. 2020)	1	<u>1.7</u>	0.575		
Few-shot NAS					
FS-NAS (Zhao et al. 2021)	5	8.4	0.653		
GM-NAS (Hu et al. 2022)	8	13.6	0.656		
K-shot NAS (Su et al. 2021)	8	13.6	0.626		
Ours					
FLOPs	3	1.3	0.711		
# of linear regions	3	1.3	0.712		
Feature isotropy	3	1.3	0.693		
# of nonlinear functions	3	1.3	0.735		
* Params indicates	the	total	number of		
parameters required for supernets					

Method	Acc. (%)			
Wiethod	Top-1	Top-5		
One-shot NAS				
GAEA (Li et al. 2021)	76.0	92.7		
SPOS (Guo et al. 2020)	74.7	-		
ProxylessNAS (Cai, Zhu, and Han 2019)	75.1	92.5		
AngleNet (Hu et al. 2020)	76.1	-		
Shapley-NAS (Xiao et al. 2022)	76.1	-		
PC-DARTS (Xu et al. 2020)	75.8	92.7		
DrNAS (Chen et al. 2021)	76.3	92.9		
ISTA-NAS (Yang et al. 2020)	76.0	92.9		
Few-shot NAS				
FS-NAS (Zhao et al. 2021)	75.9	-		
GM-NAS (Hu et al. 2022)	76.6	<u>93.0</u>		
Ours (\leq 530M)	<u>76.7</u>	93.2		
Ours (\leq 600M)	76.9	93.2		
* Params indicates the number of				