
Results

Summary Motivation

Method

Analysis

Efficient Few-Shot Neural Architecture Search

by Counting the Number of Nonlinear Functions

Youngmin Oh1 Hyunju Lee1 Bumsub Ham1,2

1Yonsei University 2Korea Institute of Science and Technology (KIST)

Problem statement
❑ Neural architecture search (NAS) aims to automatically find high-

performing neural networks from a pre-defined search space.

❑ Early NAS methods adopt reinforcement learning with policy
networks. They typically require training many networks from
scratch, which takes thousands of GPU hours.

❑ One-Shot NAS [1] adopts a weight-sharing technique to reduce the
search time, where they train a single supernet that consists of all
possible network architectures (i.e., subnets). The trained supernet
can act as a performance estimator, indicating that each subnet
does not need to be trained from scratch to predict its performance.

❑ Few-Shot NAS [2,3] proposes to use multiple supernets, as the
single supernet is likely to suffer from conflicts between subnets
during training. Specifically, they limit the extent of weight sharing
by splitting the search space into subspaces and assigning an
individual supernet to each subspace.

❑ Zero-Shot NAS [4] aims to avoid training supernets. They rely on
training-free measurements (e.g., Neural Tangent Kernels, FLOPs,
or feature isotropy), typically referred to as zero-cost proxies, to
evaluate the performance of each subnet.

❑ We have found that existing few-shot methods split a search space
either randomly [2] or by solving the graph clustering problem [3].

❑ The random criterion [2] is efficient, but each subspace could have
subnets that are likely to conflict with each other. GM-NAS [3]
better groups subnets at the cost of increasing the computational
cost

❑ Another way to split a space is to leverage zero-cost proxies. However,
they typically require processing forward and/or backward passes for
each subnet, which is computationally demanding in that the total
number of subnets is extremely large (e.g.,66 × 715 subnets)

FS-NAS [3] GM-NAS [4] Ours

* Individual subspaces (i.e., supernets) are highlighted in different colors
** Subnets with similar characteristics are marked by the same shape

Contributions
❑ We have introduced a novel few-shot NAS method that counts the

number of nonlinear functions within a subnet to divide a search
space in an efficient manner.

❑ We have observed that effectively dividing the search space
enables maintaining the performance ranking between subnets
even after reducing the number of channels required for
supernets.

❑ Motivated by our finding, we have proposed to adjust the number
of channels for each supernet, reducing the computational cost
remarkably

❑ We introduce an efficient criterion to divide a search space so that each
subspace has subnets with the same number of nonlinear functions.

❑ To count the number of nonlinear functions within a subnet, we define
two rules: (1) Accumulate the number of nonlinear functions, if layers are
connected in series; (2) Select the path with the maximum number of
nonlinear functions, if layers are connected in parallel

Adjusting the number of channels for each supernet

[1] Single path one-shot neural architecture search with uniform sampling, ECCV 2020
[2] Few-shot neural architecture search, ICML 2021
[3] Generalized few-shot nas with gradient matching, ICLR 2022
[4] Neural architecture search without training, ICML 2021

* We visualize only the
top-150 subnets

** K indicates the number
of supernets

*** In the bottom row, subnets
that belong to the same
supernet are highlighted in
the same color

Comparison of computational costs

* Total time for 15K subnets

* In terms of GPU days (with 8 NVIDIA A5000 GPUs)

On NAS-Bench-201 On ImageNet

* Params indicates the total number of
parameters required for supernets * Params indicates the number of parameters

for the chosen network

We introduce a hyperparameterG to control the number of channels for each supernet
Let us suppose learnable parameters of the 𝑖-th operation at the 𝑗-th layer as follows:

0

1

2

3

Conv-BatchNorm-ReLU

Average pooling

Skip connection

* Here, the effective number of
nonlinear functions is two

	Slide 1

