

Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation Youngmin Oh, Beomjun Kim, and Bumsub Ham Yonsei University

-Summary **Problem statement**

- Object bounding boxes provide a definite background along with the extent of each object, but each box contains a mixture of foreground and background
- Goal: train segmentation models with object bounding boxes

Motivation

- How can we generate high-quality pseudo pixel-level labels from object bounding boxes?
- How can we train segmentation models with noisy labels?

Contributions

- Introduce a simple yet effective framework which mainly consists of three stages: (1) train a CNN for image classification; (2) generate pseudo pixel-level labels; (3) train a CNN for semantic segmentation
- Propose a background-aware pooling (BAP) layer that leverages a background prior to separate foreground and background regions inside object bounding boxes
- Introduce a noise-aware loss (NAL) that alleviates the influence of incorrect labels adaptively
- Demonstrate state-of-the-art performance on PASCAL VOC 2012 and MS-COCO

Comparison between GAP and BAP —

59.7	-
59.7	-
65.4	62.2
65.7	66.1
66.2	66.9
69.7	71.1
75.5	76.1
77.0	77.8
78.7	79.2
70.8	69.9
	55.7 56.2 69.7 75.5 77.0 78.7 70.8

mious of pseudo labels on PASCAL VOC 2012

Experiments

Input image.

Ours* Ground truth Input image Confidence maps σ .

Ours.

Ours*

Ground truth.

Method	val	test	
Supervision: Image-level labels (10K) with Saliency (3K)			
SeeNet (NIPS 2018)	61.1	60.7	
FickleNet (CVPR 2019)	61.2	61.9	
OAA (ICCV 2019)	63.1	62.8	
ICD (CVPR 2020)	64.0	63.9	
Supervision: Boxes (10K)			
BoxSup (ICCV 2015)	62.0	64.6	
WSSL (ICCV 2015)	60.6	62.2	
SDI (CVPR 2017)	65.7	67.5	
BCM (CVPR 2019)	66.8	-	
Ours			
w/ $Y_{\rm crf}$	67.8	-	
w/ $Y_{\rm ret}$	66.1	-	
w/ NAL	68.1	69.4	
Supervision: Boxes (9K) with Masks (1K)			
BoxSup (ICCV 2015)	63.5	66.2	
WSSL (ICCV 2015)	65.1	66.6	
SDI (CVPR 2017)	65.8	66.9	
BCM (CVPR 2019)	67.5	-	
Ours w/ NAL	70.5	71.5	
mIoUs of DeepLab-V1			
$\sum_{n=1}^{n} DASCAL \sqrt{OC} 2012$			
UII FAJLAL VUL ZUIZ			