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ISS aims at continually segmenting novel categories without accessing | L.~ S d 2recy, T ot ot introduce an adaptive logit regularizer (ALI).
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Among them, MiB introduces calibrated cross-entropy (CCE) and
calibrated knowledge distillation (CKD) terms. While both are widely
adopted in ISS, there is a lack of theoretical understanding of them.

Replay-based methods exploit a small set of previously seen images

except that ours computes the gradients
) for all previous categories including the
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together with ground-truth labels. They achieve state-of-the-art tabeled i | c=y(p) | pL—1 }S o We train a current model with a new training objective.
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Step 2-1: Extract features

It reduces logit values of new categories by gradient descent.

Visualization of ¢% — pt
This is important to prevent overfitting to the new categories. '

Contributions

Provide an in-depth analysis of CCE and CKD termes.

Present a new regularization term, called adaptive logit regularizer,
that incorporates the merits of CCE and CKD, while discarding the

It always raises logit values of all previous categories by gradient descent,
regardless of whether predictions of a current model are correct or not. -------="""

Calibrated Knowledge Distillation (CKD)

Extract features of new categories in order to replay them in
subsequent stages.

Freeze {¢t, wt} qbt a feature extractor at a stage t
for c € Crtlew do :w : a classifier at a stage t
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= Memorized features, which are extracted in the previous stage t — 1, are not compatible with a current classifier w
20- To handle this, we propose to train category-specific rotation matrices. | rotation transform s lght-weight, and enables maintaining the relations between features that belong to the same category. |
15 - 1. Each rotation matrix is defined using the Cayley transform 2. Compute correlation scores and define prototypes for 3. Each matrix rotates a previous prototype rt~1 to align with a
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S. = U, — UZ U,: a strictly upper triangular matrix (randomly initialized) (Note that ft_l and mt_l share the same feature space)
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0. A - > The updated features along with training samples of D¢ are used to fine-tune a classifier wt with the following objective.
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