A네IFE: Adaptive Logit Regularlzer and Feature REplay for Incremental Semantic Segmentation

NEURAL INFORMATION
Youngmin Oh Donghyeon Baek Bumsub Ham

Summary

Problem statement: incremental semantic segmentation (ISS) \square ISS aims at continually segmenting novel categories without accessing training samples for previously learned categories.
\square Regularization-based methods focus on designing regularization terms. Among them, MiB introduces calibrated cross-entropy (CCE) and calibrated knowledge distillation (CKD) terms. While both are widely adopted in ISS, there is a lack of theoretical understanding of them.
\checkmark Replay-based methods exploit a small set of previously seen images together with ground-truth labels. They achieve state-of-the-art performance at the cost of large memory footprint.
Goal: Achieve a better trade-off in terms of accuracy and efficiency

Contributions

\square Provide an in-depth analysis of CCE and CKD terms
\square Present a new regularization term, called adaptive logit regularizer, that incorporates the merits of CCE and CKD, while discarding the negative effects.
\square Propose to memorize latent features for replaying, reducing memory requirements and avoiding data privacy issues

Analysis of CCE and CKD

$C_{\text {all }}^{t}=C_{\text {prev }}^{t} \cup C_{\text {new }}^{t}$ $\varnothing=C_{\text {prev }}^{t} \cap C_{\text {new }}^{t}$ $C_{\text {prev }}^{t}=C_{\text {all }}^{t-1}$
$p_{c}^{t}(\mathbf{p})=\frac{e^{z_{c}^{t}(\mathbf{p})}}{\sum_{k \in C_{\mathrm{an}}^{t}} e^{z_{k}^{t}(\mathbf{p})}}, \quad c \in C_{\mathrm{all}}^{t} \quad q_{c}^{t}(\mathbf{p})=\frac{e^{z_{c}^{t}(\mathbf{p})}}{\sum_{k \in C_{\text {prev }}^{t}} e^{z_{k}^{t}(\mathbf{p})}}, \quad c \in C_{\mathrm{prev}}^{t}$ at location p
Gradients w.r.t a logit value $z_{c}^{t}(\mathbf{p})$ for a category c at location \mathbf{p} \square Calibrated Cross-Entropy (CCE)

It reduces logit values of new categories by gradient descent
Visualization of $q_{c}^{t}-p_{c}^{t}$

This is important to prevent overfitting to the new categories. It always raises logit values of all previous categories by gradient descent, regardless of whether predictions of a current model are correct or not.
\square Calibrated Knowledge Distillation (CKD)
$L_{\mathrm{CKD}}(\mathbf{p})=-p_{b g}^{t-1}(\mathbf{p}) \log p_{\text {ckd }}^{t}(\mathbf{p})+\sum_{k \in C_{\text {trev }}^{t} \backslash\{b q\}}-p_{k}^{t-1}(\mathbf{p}) \log p_{k}^{t}(\mathbf{p}), \quad \forall \mathbf{p} \quad p_{\text {ckd }}^{t}(\mathbf{p})=\sum_{k \in\{b g\} \cup C_{\text {new }}^{t}} p_{k}^{t}(\mathbf{p})$

It makes p_{c}^{t} similar to p_{c}^{t-1} directly, while vanilla KD makes q_{c}^{t} similar to p_{c}^{t-1}
It hinders discriminating new categories from a background category at training time.

Step 1:Train a current model
\square Based on the analysis, we define a new form of gradients and introduce an adaptive logit regularizer (ALI).

Conditions		Gradients
$\mathbf{p} \notin \mathcal{R}_{\text {new }}^{t}$	$c \in C_{\text {new }}^{t}$	
$L_{\text {ALI }}(\mathbf{p})=\log$	$\sum_{r \in G_{12}^{s}} e^{\left.e^{t_{k}^{t}(\mathbb{P}}\right)}$	$\sum_{C_{\text {reove }}} p_{k}^{t-1}(\mathbf{p}) z_{k}^{t}$

\square We train a current model with a new training objective

$$
L_{\mathrm{S} 1}(\mathbf{p})=L_{\mathrm{CE}}(\mathbf{p})+\lambda_{\mathrm{ALI}} L_{\mathrm{ALI}}(\mathbf{p})+\lambda_{\mathrm{KD}} L_{\mathrm{KD}}(\mathbf{p}) \mathbb{1}\left[\mathbf{p} \in \mathcal{R}_{\text {new }}^{t}\right]
$$

Step 2-1: Extract features

\square Extract features of new categories in order to replay them in subsequent stages.

Freeze $\left\{\phi^{t}, w^{t}\right\}$
for $\quad \phi^{t}$ da feature extractor at a stage t
for $c \in C_{\text {new }}^{t}$ do
$s \leftarrow 0$
$\boldsymbol{m}_{c}^{t}(s)$: the classifier at a a stage t
repeat
$\quad(x, y) \sim D^{t}$
Extract a feature map $f^{t} \leftarrow \phi^{t}(x)$
Average features for the category $c \quad m_{c}^{t}(s) \leftarrow \frac{1}{\left|\mathcal{R}_{c}\right|} \sum_{\mathbf{p} \in \mathcal{R}_{c}} f^{t}(\mathbf{p})$ $s \leftarrow s+1$
until $s=S / / S$ indicates the number of features for the category c end for

Step 2-2: Compensate a distribution shift of memorized features

Train rotation matrices

\square Memorized features, which are extracted in the previous stage $t-1$, are not compatible with a current classifier w^{t}
\square To handle this, we propose to train category-specific rotation matrices. Arotation transform is light-weight, and enables maintaining the relations between features that belong to the same categry.

1. Each rotation matrix is defined using the Cayley transform
$\mathbf{S}_{c}=\mathbf{U}_{c}-\mathbf{U}_{c}^{\top} \quad \mathbf{U}_{c}$: a strictly upper triangular matrix (randomly initialized)
$\mathbf{R}_{c}=\left(\mathbf{I}-\mathbf{S}_{c}\right)\left(\mathbf{I}+\mathbf{S}_{c}\right)^{-1} \quad \mathbf{I}=\mathbf{R}_{c} \mathbf{R}_{c}^{\top}=\mathbf{R}_{c}^{\top} \mathbf{R}_{c}, c \in C_{\text {prev }}^{t}$

Update features

$\square \hat{m}_{c}^{t}(s)=\mathbf{R}_{c} m_{c}^{t-1}(s)$
2. Compute correlation scores and define prototypes for previous and current stages
(Note that f^{t-1} and m_{c}^{t-1} share the same feature space)

$$
\begin{aligned}
& v_{c}(\mathbf{p})=\sum_{s=1}^{S} \operatorname{ReLU}\left(\frac{f^{t-1}(\mathbf{p})}{\left\|f t^{t-1}(\mathbf{p})\right\|} \cdot \frac{m_{c}^{t-1}(s)}{\left\|m_{c}^{t-1}(s)\right\|}\right) \\
& \sigma_{c}(\mathbf{p})=\frac{e^{r v_{c}(\mathbf{p})}}{\sum_{\mathbf{p}} e^{r_{v}(\mathbf{p})}} \quad \tau: \text { atemperature parameter } \\
& r_{c}^{t-1}=\sum_{\mathbf{p}} \sigma_{c}(\mathbf{p}) f^{t-1}(\mathbf{p}), \quad r_{c}^{t}=\sum_{\mathbf{p}} \sigma_{c}(\mathbf{p}) f^{t}(\mathbf{p})
\end{aligned}
$$

3. Each matrix rotates a previous prototype r_{c}^{t-1} to align with current prototype r_{c}^{l} and is trained with the following objective

$$
\hat{r}_{c}^{t}=\mathbf{R}_{c} r_{c}^{t-1}
$$

$L_{\mathrm{FID}}=\sum_{c \in C_{\text {prev }}^{t}}\left(1-\frac{\hat{r}_{c}^{t}}{\left\|r_{c}^{t}\right\|} \cdot \frac{r_{c}^{t}}{\left\|r_{c}^{t}\right\|}\right) \quad L_{\mathrm{REG}}=\sum_{c \in C_{\text {prev }}^{t}}-\log \left(\frac{e^{t_{c}^{t} \cdot w_{c}^{t}}}{\sum_{i \in C_{\mathrm{at}}^{t}} e^{e_{c}^{t} \cdot w_{v}^{t}}}\right)$
$L_{\mathrm{S} 2}=\lambda_{\mathrm{ROT}} L_{\mathrm{FID}}+\left(1-\lambda_{\mathrm{ROT}}\right) L_{\mathrm{REG}}$

Step 3: Fine-tune a classifier

\square The updated features along with training samples of D^{t} are used to fine-tune a classifier w^{t} with the following objective

